Phase Transition and Critical Phenomena in Random Walks:

Charles Morrissey *, Nakisa Nassershari†, Ryan Spitler ‡, Stacey Kowalczyk §

Faculty Advisor: Dr. Aklilu Zeleke
Michigan State University
June 22, 2010

1 Project Description

It is well known that the mean root square displacement of random walks defined on integer lattice \(Z^d \) follows the power law \(Cn^{1/2} \) in all dimensions. Moreover such random walks are recurrent in \(d = 1, 2 \) and transient in \(d \geq 3 \). In this project we investigate the behavior of random walks defined on other graphs. More specifically we determine the mean root square displacement of random walks defined on \(Z_2 \times Z_2 \), the Sierpinski carpet, and generalized comb lattice as well as their recurrence/transience behavior. We will also study long jump random walks defined on the integer lattice. Analytical and simulation results will be presented.